Use left and right arrows to move between slides.
thermal radiation [ˈθɜr məl ˌreɪ diˈeɪ ʃən]
noun
Examples:
thermal radiation [ˈθɜr məl ˌreɪ diˈeɪ ʃən]
noun
Examples:
accretion disk [ə-ˈkrē-shən ˈdisk]
noun
We can find them at
Total torque: | $ G(R) = 2\,\pi\,R \; \nu\,\Sigma\,R^2\,\Omega^\prime $ |
Net torque on a ring: | $ G(R+dR) - G(R) = \cfrac{\partial G}{\partial R}\,dR $ |
Torque caries out work: | $ \Omega\,\cfrac{\partial G}{\partial R}\,dR = \left[ \color{blue}{\cfrac{\partial}{\partial R}(G\Omega)} - \color{red}{G\Omega^\prime} \right]\,dR $ $\color{blue}{\partial(G\Omega)/{\partial R}}$: rate of flow of rotational energy (ang. mom.), $\color{red}{G\Omega^\prime}$: local rate of loss of mechanical energy |
Local rate of energy release: (per unit time and area) |
$ D(R) = \cfrac{G\,\Omega^\prime dR}{2\cdot 2\pi\,R\,dR} = \cfrac{G\,\Omega^\prime}{4\pi R} = \cfrac{9}{8}\nu\,\Sigma\,\cfrac{\mathcal{G}\,M}{R^3}$ |
$$ \dot{M} = - 2\,\pi\,R\,\Sigma\,v^{\scriptscriptstyle R} $$ $$ R\cfrac{\partial}{\partial t}\left( \Sigma\,R^2\,\Omega \right) + \cfrac{\partial}{\partial R} \big(\underbrace{R\,\Sigma\,v^{\scriptscriptstyle R}}_{-\dot{M}/2\pi} \;\; \underbrace{R^2\Omega}_{L}\big) = \cfrac{1}{2\pi}\cfrac{\partial G}{\partial R}$$
$$ -\cfrac{\dot{M}}{2\,\pi} \, L = \cfrac{G}{2\pi} + {\rm const} $$ $$ \cfrac{\dot{M}}{2\,\pi} \, \big(L - L_{\rm in} \big) = -\cfrac{G}{2\pi}$$ (torque vanishes at the inner edge)
$$ L(R) = R^2\,\Omega(R)$$ $$ \Omega(R) = \Omega_{\rm K}(R) = \sqrt{\mathcal{G}\,M\,R^{-3}}$$ $$ G(R) = 2\,\pi\,R \; \nu\,\Sigma\,R^2\,\Omega^\prime $$ $$ \cfrac{\dot{M}}{2\,\pi} \, \big(L - L_{\rm in} \big) = -\cfrac{G}{2\pi}$$ $$ D(R) = \cfrac{G\,\Omega^\prime}{4\pi R} $$ $$ \color{blue}{D(R) = \cfrac{3\,\mathcal{G}\,M\,\dot{M}}{8\,\pi\,R^3} \left[ 1 - \left(\cfrac{R_{\rm in}}{R}\right)^{1/2} \right]} $$ local rate of enery release = cooling radiative flux [erg/s/cm2]
$$ F(R) = \cfrac{3\,\mathcal{G}\,M\,\dot{M}}{8\,\pi\,R^3} \left[ 1 - \left(\cfrac{R_{\rm in}}{R}\right)^{1/2} \right] $$ $$ F = \sigma_{\rm\scriptscriptstyle SB} T^4 $$ $$ T_{\rm eff}(R) = \Big( F(R) / \sigma_{\rm\scriptscriptstyle SB} \Big)^{1/4} $$
$$ I_\nu(E, T) = \cfrac{2}{h^2 \, c^2} \cfrac{E^3}{\exp{E/kT}-1}$$
$$ F_\nu(E) = \int I_\nu(E, T) \, d\Omega = \int I_\nu(E, T) \, \cos\theta \, dS/D^2 = \int I_\nu(E, T) \, \cos\theta /D^2 \, r\, dr $$
Idea: By fitting the shape of the thermal component, we may estimate the spin of the BH.
Credit: R. Narayan, J. McClintock
DISK | non-relativistic $\alpha$-disk with opacity given by free-free absorption (Kramers law) |
DISKM | $\alpha$-disk with $\tau_{r\phi} \sim P_{\rm gas}$ |
DISKO | $\alpha$-disk with $\tau_{r\phi} \sim P_{\rm rad}$ |
BBODY | single-temperature black-body model (normalized to luminosity) |
BBODYRAD | single-temperature black-body model (normalized to emitting area) |
DISKBB | MCBB disk with $T_{\rm eff} \sim r^{-3/4}$ (non-zero torque boundary) |
DISKPBB | MCBB disk with $T_{\rm eff} \sim r^{-p}$ (non-zero torque boundary; for radial advection) |
DISKPN | $\alpha$-disk with $T_{\rm eff}(r)$ given by Paczynski-Wita potential |
EZDISKBB | Shakura-Sunyaev disk model (zero-torque boundary) |
GRAD | relativistic $\alpha$-disk for Schwazschild black hole ($r_{\rm in}=6\,r_{\rm g}$) |
KERRD | relativistic $\alpha$-disk for extreme-Kerr black hole ($r_{\rm in}=6\,r_{\rm g}$) |
KERRBB | relativistic $\alpha$-disk (NT) with color-corrected blackbody, self-irradiation and limb-darkening |
BHSPEC | relativistic $\alpha$-disk (NT) with surface emission computed by stellar atmospheres-like calculations (vertical structure + radiative transfer) |
AGNSPEC | like BHSPEC, but for AGNs ($M \sim 10^7 M_\odot$) |
KERRBB2 | KERRBB with $f_{\rm col}$ taken from BHSPEC |
KYNBB | relativistic $\alpha$-disk (NT) with color-corrected blackbody, obscuration and polarization |
SLIMBH | relativistic slim disk model |
search for: XSPEC models
DISK | non-relativistic $\alpha$-disk with opacity given by free-free absorption (Kramers law) |
DISKM | $\alpha$-disk with $\tau_{r\phi} \sim P_{\rm gas}$ |
DISKO | $\alpha$-disk with $\tau_{r\phi} \sim P_{\rm rad}$ |
BBODY | single-temperature black-body model (normalized to luminosity) |
BBODYRAD | single-temperature black-body model (normalized to emitting area) |
DISKBB | MCBB disk with $T_{\rm eff} \sim r^{-3/4}$ (non-zero torque boundary) |
DISKPBB | MCBB disk with $T_{\rm eff} \sim r^{-p}$ (non-zero torque boundary; for radial advection) |
DISKPN | $\alpha$-disk with $T_{\rm eff}(r)$ given by Paczynski-Wita potential |
EZDISKBB | Shakura-Sunyaev disk model (zero-torque boundary) |
GRAD | relativistic $\alpha$-disk for Schwazschild black hole ($r_{\rm in}=6\,r_{\rm g}$) |
KERRD | relativistic $\alpha$-disk for extreme-Kerr black hole ($r_{\rm in}=6\,r_{\rm g}$) |
KERRBB | relativistic $\alpha$-disk (NT) with color-corrected blackbody, self-irradiation and limb-darkening |
BHSPEC | relativistic $\alpha$-disk (NT) with surface emission computed by stellar atmospheres-like calculations (vertical structure + radiative transfer) |
AGNSPEC | like BHSPEC, but for AGNs ($M \sim 10^7 M_\odot$) |
KERRBB2 | KERRBB with $f_{\rm col}$ taken from BHSPEC |
KYNBB | relativistic $\alpha$-disk (NT) with color-corrected blackbody, obscuration and polarization |
SLIMBH | relativistic slim disk model |
search for: XSPEC models
The spectrum from an accretion disk consisting of multiple blackbody components with $T_{\rm eff} \sim r^{-3/4}$.
(Mitsuda et al. 1984; Makishima et al. 1986).
par1 | temperature at inner disk radius (keV) |
norm | $(R_{in}/D_{10})^2 \cos\theta$ $R_{in}$ is "an apparent" inner disk radius in km, $D_{10}$ the distance to the source in units of 10 kpc, and $\theta$ the angle of the disk ($\theta = 0$ is face-on). On the correction factor between the apparent inner disk radius and the realistic radius see Kubota et al. (1998). |
A multi-temperature black-body model for a thin, steady, general relativistic accretion disk around a Kerr black hole. The effect of self-irradiation of the disk is considered, and the torque at the inner boundary of the disk is allowed to be non-zero.
(Li et al. 2005)
par1 | torque at the inner boudary |
par2 | BH spin |
par3 | disk inclination angle |
par4 | BH mass |
par5 | mass accretion rate |
par6 | source distance |
par7 | spectral hardening factor (explain) |
par8 | self-irradiation flag |
par9 | limb-darkening flag |
norm | fixed to 1, if inclination, mass and distance are frozen |
$$ I_\nu(\nu, R) = \color{red}{f_{\rm c}^{-4}} B_\nu(\color{red}{f_{\rm c}}T_{\rm eff}) = \frac{2 h \nu^3 c^{-2} \color{red}{f_{\rm c}^{-4}}} {\exp\left[h \nu/ k \color{red}{f_{\rm c}} T_{\rm eff}(R)\right]-1} $$