X-ray spectroscopy - a walk through XSPEC

- Download data:
 - go to http://galaxy.asu.cas.cz/~svoboda/pub/AGN_workshop/data/ and download folders spectrum_1 and spectrum_2
- Load data in the Xspec
 - go to the folder Spectrum_1 and load EPIC/PN data:
 - data mcg6_10_r.pi
 - check what data you have:
 - show data
 - $^\circ$ $\,$ ignore bad data and data out of valid energy range:
 - ignore bad
 - ignore **-1. 10.-** (opposite command is notice)
 - **- means everything up to.., -** means everything from
 - be aware that if you put integers behind ingore/notice, it will not ignore energies but channels!
 - **notice** 0.5-1. (XMM-Newton is good also below 1 keV)
 - if you have more data and you want to apply notice/ignore to all of them, just type "**:": e.g., ignore **:**-0.5 10.-**
- Plot your data
 - plot ldata (plot data, plot counts)
- Define a model
 - model phabs*powerlaw
 - enter model parameters
 - change a parameter of the model, freeze known parameters
 - **newpar** 1 0.036
 - **freeze** 1 (opposite command is **thaw**)
 - you can also define delta of a parameter, which is a first step of the value for the fitting procedure (if negative the parameter is frozen), you can also define allowed intervals for the parameter: newpar #param_number #param_value, #delta, #min, #min, #max, #max
 - e.g. newpar 2 2.,0.1,1.5,1.5,3.,3.
 - show free/all parameters
 - e.g., **show free**
 - show all
 - Fit the data

•

•

- fit
- if you want to define number of steps in fitting and the depth (critical delta), you can type e.g.:
 - fit 1000 1e-2
- plot the data and model residuals, they are different ways of plotting residuals:
 - plot ldata ratio
 - plot ldata residuals
 - plot ldata chisq, ...
- Add a component to your model
 - addc 2 zxipcf
 - addc 3 zgau
 - fit with the new model, has the fit improved?
 - Save your model/all
 - save model my_model.mdl
 - save all my_session.xcm
- Load model/all:

- @my_model.mdl
- @my_session.xcm
- Check your model if it makes sense:
 - what is the energy and sigma for the gaussian line, any physical interpretation?
 plot model
- Replace a Gaussian line by a relativistic iron line:
 - delete a model component:
 - **delc** 3
 - add a new component, you can also use "editmod" instead of "addc"
 - e.g., editmod phabs*zxipcf*(po+kyrline)
- Try to fit, change parameters if needed. Try to get the least residuals as possible and achieve the reduced chi-2 less than two (reduced chi-2 is chi-2 divided by degrees of freedom).
- Calculate the error of a parameter (must be a free parameter):
 - error 6
 - error 8
 - error command works only if your reduced chi-2 is less than 2; if it is higher and you want to run this command, you can do it by typing, e.g., error max 10 8
- Calculate the dependence of chi-2 on the parameter value:
 - steppar 8 0 1 100
 - plot contour
- Calculate a 2D contour between two parameters:
 - if you want Xspec to start calculation in each grid from the best fit type "steppar best ..."
 - steppar best 8 0 1 20 9 20 45 20
 - plot contour
- Write your results in a file
 - setplot command we myfit
 - plot ldata ratio (or what you want to write in your file)
 - **setplot delete 1** (otherwise your file will be rewritten again by new commands)
- Save all and exit:
 - save all bestfit.xcm
 - exit
- Good luck with fitting!

Additional Exercise:

1) Investigate two unknown X-ray spectra and find out which is Type-1 and which is Type-2 AGN:

Spectrum 1: z = 0.008, Galactic column density $nH = 3.6e20 \text{ cm}^{-2}$ Spectrum 2: z = 0.015, Galactic column density $nH = 5.7e20 \text{ cm}^{-2}$

Cross the line between the corresponding AGN spectrum and type:

AGN spectrum 1	Seyfert-1 AGN
AGN spectrum 2	Seyfert-2 AGN

- 2) Fit the spectra with a simple absorbed power-law model and measure the power-law slope and the level of absorption. Add a reflection model (line "gauss" and/or reflection continuum "pexrav") to your spectral fit and check for the presence of reflection features. If present measure the reflection fraction or the equivalent width of the iron line.
- 3) Calculate uncertainty of the interesting parameters and plot a statistical contour (in 1 or 2-D parameter space).
- 4) Advanced exercise: in Spectrum 1 load a spectrum from a different time interval (in folder "Additional") and compare the two spectra from different time intervals. Which spectrum was caught in high/low state and what changed in the spectrum?